

 [image: Build Status] [https://travis-ci.org/Terralego//django-geostore] [image: Maintainability] [https://codeclimate.com/github/Terralego/django-geostore/maintainability] [image: codecov] [https://codecov.io/gh/Terralego/django-geostore]

django-geostore

Dynamic geographic datastore with Vector Tiles generation from PostGIS and json schema definition and validation.

	Installation
	Requirements
	SYSTEM REQUIREMENTS

	With pip

	With git

	Configuration
	Settings
	INTERNAL_GEOMETRY_SRID

	HOSTNAME

	TERRA_TILES_HOSTNAMES

	MAX_TILE_ZOOM

	MIN_TILE_ZOOM

	GEOSTORE_LAYER_VIEWSSET

	GEOSTORE_LAYER_SERIALIZER

	GEOSTORE_EXPORT_CELERY_ASYNC

	URLs
	Admin

	QUICK START
	Manage layers
	Geometry type validation
	Supported types

	Without validation

	With validation

	JSON schema definition / validation

	Vector tiles
	On layers

	On group of layers

	Relations
	Manual relation

	Automatic relations
	Intersects

	Distance

	Data import
	ShapeFile

	GeoJSON

	Data export

	API endpoints

	Vector Tiles
	Settings

	metadata
	attribution

	licence

	description

	tiles
	minzoom

	maxzoom

	pixel_buffer

	features_filter

	properties_filter

	features_limit

	Example

	Vector Tiles Group Access
	Where to add a group

	Then ?

	Plugins
	Routing

Installation

Requirements

	Minimum configuration :

	
	Python 3.6+

	PostgreSQL 10

	PostGIS 2.4

And if you want to use Routing :

	PgRouting 2.5 + django-geostore-routing

	Recommended configuration :

	
	Python 3.8

	PostgreSQL 11

	PostGIS 2.5

And if you want to use Routing :

	PgRouting 2.6 + django-geostore-routing

Your final django project should use django.contrib.gis.backend.postgis as default DATABASE backend

USING database docker image :

https://hub.docker.com/r/postgis

or

https://hub.docker.com/r/pgrouting

SYSTEM REQUIREMENTS

these are debian packages required

	libpq-dev (psycopg2)

	gettext (translations)

	binutils (django.contrib.gis)

	libproj-dev (django.contrib.gis)

	gdal-bin (django.contrib.gis)

recommended

	postgresql-client (if you want to use ./manage.py dbshell command)

With pip

From Pypi:

pip install django-geostore

From Github:

pip install -e https://github.com/Terralego/django-geostore.git@master#egg=geostore

With git

git clone https://github.com/Terralego/django-geostore.git
cd django-geostore
python setup.py install

Configuration

In your project :

Add geostore to your INSTALLED_APPS :

install required apps
INSTALLED_APPS = [
 ...
 'django.contrib.gis', # assume contrib.gis is installed
 ...
 'rest_framework',
 'rest_framework_gis',
 'geostore',
 ...
]

Settings

Warning

Geostore will change the geojson serializer on app loading.

INTERNAL_GEOMETRY_SRID

Default: 4326

It’s the installation SRID, it must be set before the first migration and never change after installation,
else you must create your own migrations to change your database SRID.

HOSTNAME

Default: empty

Used to feed TERRA_TILES_HOSTNAMES setting

TERRA_TILES_HOSTNAMES

Default: [HOSTNAME,]

It contains the list of base URLs where are served the vector tiles.
Since web browsers limit the number of connections to one domain name, a workaround is to use
many domains to serve vector tiles, so browser will create more tcp connections, and the tiles loading
will be faster.

MAX_TILE_ZOOM

Default: 15

It represent the max authorized zoom, if a tile with a zoom above this setting is requested, geostore will refuse to serve it.

MIN_TILE_ZOOM

Default: 10

Like for MAX_TILE_ZOOM setting, if a tile of a lesser zoom than this setting is requested, backend will refuse to serve it.

GEOSTORE_LAYER_VIEWSSET

Default: ‘geostore.views.LayerViewSet’

Python dotted path to LayerViewSet. Can be any class inherited from ‘geostore.views.LayerViewSet’

GEOSTORE_LAYER_SERIALIZER

Default: ‘geostore.serializers.LayerSerializer’

Python dotted path to LayerSerializer. Can be any class inherited from ‘geostore.serializers.LayerSerializer’

GEOSTORE_EXPORT_CELERY_ASYNC

Default: False
If your project use a celery worker, set to True to enable async exports. URLS will be provided in API, calling these urls will launch asynchronous exports and send email with a link for user download.

URLs

Add to you urls.py file this pattern:

urlpatterns = [
 ...
 path('', include('geostore.urls', namespace='geostore')),
 ...
]

You can customize default url and namespace by including geostore.views directly

Admin

you can disable and / or customize admin

QUICK START

Manage layers

The simplest way to create a geographic data layer :

from geostore import GeometryTypes
from geostore.models import Layer

layer = Layer.objects.create(name='Mushroom spot',
 geom_type=GeometryTypes.Point)

Geometry type validation

Layer support these geometry types :

Supported types

geostore.GeometryTypes

GeometryCollection = 7
LineString = 1
MultiLineString = 5
MultiPoint = 4
MultiPolygon = 6
Point = 0
Polygon = 3

Define a geometry type to layer to force feature geometry validation.

Without validation

from geostore.models import Layer, Feature
from geostore import GeometryTypes
from django.contrib.geos.geometries import GEOSGeometry

layer = Layer.objects.create(name='Mushroom spot 2')
feature = Feature(layer=layer,
 geom=GEOSGeometry("POINT(0 0)")
feature.clean() # ok
then, you can save
feature.save()
feature = Feature(layer=layer,
 geom=GEOSGeometry("LINESTRING((0 0), (1 1))")

feature.clean() # ok too
feature.save()

With validation

from geostore.models import Layer, Feature
from geostore import GeometryTypes
from django.contrib.geos.geometries import GEOSGeometry

layer = Layer.objects.create(name='Mushroom spot 3',
 geom_type=GeometryTypes.Point)
feature = Feature(layer=layer,
 geom=GEOSGeometry("POINT(0 0)")

feature.clean() # ok
feature.save()
feature = Feature(layer=layer,
 geom=GEOSGeometry("LINESTRING((0 0), (1 1))")
feature.clean() # validation error !

JSON schema definition / validation

You can use json schema definition to describe your data content, and improve feature properties validation.

https://json-schema.org/
https://rjsf-team.github.io/react-jsonschema-form/

from geostore.models import Layer, Feature
from geostore import GeometryTypes
from django.contrib.geos.geometries import GEOSGeometry

layer = Layer.objects.create(name='Mushroom spot 4',
 geom_type=GeometryTypes.Point,
 schema={
 "required": ["name", "age"],
 "properties": {
 "name": {
 "type": "string",
 "title": "Name"
 },
 "age": {
 "type": "integer",
 "title": "Age"
 }
 }
 })
feature = Feature(layer=layer,
 geom=GEOSGeometry("POINT(0 0)")
feature.clean() # Validation Error ! name and age are required

feature = Feature(layer=layer,
 geom=GEOSGeometry("POINT(0 0)",
 properties={
 "name": "Arthur",
 })
feature.clean() # Validation Error ! age is required

feature = Feature(layer=layer,
 geom=GEOSGeometry("POINT(0 0)",
 properties={
 "name": "Arthur",
 "age": "ten",
 })
feature.clean() # Validation Error ! age should be integer

feature = Feature(layer=layer,
 geom=GEOSGeometry("POINT(0 0)",
 properties={
 "name": "Arthur",
 "age": 10
 })
feature.clean() # ok !
feature.save()

Vector tiles

geostore provide endpoint to generate and cache MVT based on your data.

You can access these tiles through Layer and LayerGroup features.

On layers

On group of layers

Relations

	You can define relations between layers (and linked features)

Warning

Compute relations need celery project and worker configured in your project.
Run at least 1 worker.
You need to fix settings explicitly to enable asynchronous tasks.
GEOSTORE_RELATION_CELERY_ASYNC = True

Manual relation

No automatic links between features. You need to create yourself FeatureRelation between Features.

Automatic relations

If any celery project worker is available, and GEOSTORE_RELATION_CELERY_ASYNC settings set to True,
each layer relation creation or feature edition will launch async task to update relation between linked features.

Intersects

By selecting intersects, each feature in origin layer intersecting geometry features in destination layer, will be linked to them.

Distance

By selecting distance, each feature in origin layer with distance max geometry features in destination layer, will be linked to them.

Warning

You need to define distance in settings:
{“distance”: 10000} # for 10km

Data import

ShapeFile

GeoJSON

Data export

API endpoints

Vector Tiles

Vector tiles are served following the Mapbox Vector Tiles standard, and using the ST_AsMVT Postgis method.

Most of the work is done in the geostore.tiles.helpers module.

Settings

Vector tiles can be served in many ways, and it generation can be configured. This allow you to manage which data is returned, but also some tunning settings.

The Layer models has a settings attribute which is a JSONField.

Here we describe available json keys and its content, then we provide your an example.

metadata

Contains all data metadata that can be added to tile content, it allows you to store it in a
convenient way.

attribution

Default: None

Attribution of the layer’s data. Must be a dict like this:

{'name': 'OSM contributors', href='http://openstreetmap.org'}

licence

Default: None

String containing the layer’s data licence. i.e.: ODbL, CC-BY, Public Domain, …

description

Default: None

Text that describe the data.

tiles

minzoom

Default: 0

Min zoom when the layer is served in tiles. Must be higher or equal to MIN_ZOOM setting.

maxzoom

Default: 22

Max zoom when the layer is served in tiles. Must be lower or equal to MAX_ZOOM setting.

pixel_buffer

Default: 4

Buffer size around a tile, to match more features and clip features at a larger size than the tile.

Mostly, the default value is enough, but sometimes, depending of the display style (width border of lines or polygons),
you will need to increase this value.

features_filter

Default: None

Filter the features queryset, by this value. Could be used to not return all features of your layers on the tiles.

The complete object is passed to a filter(properties__contains) method

properties_filter

Default: None

List of allowed properties in tiles. This must be a list of properties that will be the only one present in vector tiles.
If set to None, all properties will be returned, else only properties present in the list will be returned.

features_limit

Default: 10000

Maximal number of features in a tile. Used to prevent tiles to have too much data, since MVT standard tells a tile must not be high than 500ko.

Example

{
 'metadata': {
 'attribution': {'name': 'OSM contributors', href='http://openstreetmap.org'}
 'licence': 'ODbL,
 'description': "Good Licence",
 },
 # Tilesets attributes
 'tiles': {
 'minzoom': 10,
 'maxzoom': 14,
 'pixel_buffer': 4,
 'features_filter': 500,
 'properties_filter': ['my_property',],
 'features_limit': 10000,
 }
}

Vector Tiles Group Access

Django-Geostore has a mecanism to authorize only some django’s user Groups to access layer’s on vector tiles.

This can be used to manage layer access through vector tiles.

Here we’re going to describe how it works.

Where to add a group

Each layer has a ManyToMany relationship to django’s Group model, that authorized only users present is thoses groups
to have access to thoses layers through vector tiles.

You can add a group, with the normal django’s ORM API:

from django.contrib.auth.models import Group
from geostore.models import Layer
g = Group.objects.first()
l = Layer.objects.first()

l.authorized_groups.add(g)

Then ?

Then, you can generate the autheticated URL by using a QueryString like above,
where user_groups are a list of user_groups names, and layergroup is the group of the layer:

from geostore.tokens import tiles_token_generator
querystring = QueryDict(mutable=True)
querystring.update(
{
 "idb64": tiles_token_generator.token_idb64(
 user_groups, layergroup
),
 "token": tiles_token_generator.make_token(
 user_groups, layergroup
),
}
)

tilejson_url = reverse("group-tilejson", args=(layergroup.slug,))
authenticated_url = f"{tilejson_url}?{querystring.urlencode()}"

You’ll have available an authenticated url, this will filter layers in tiles that are accessible to the authenticated user groups.

All authenticated informations will be provided by the authenticated tilejson, that will provide to frontend all authenticated urls.

Usually, mapbox needs only the tilejson, geostore will do all the remaining work.

Plugins

Routing

django-geostore-routing integrate a way to use your LineString layer as a routing one. It uses pgRouting as backend.

Install it with :

pip install django-geostore-routing

and enable-it in your INSTALLED_APPS :

INSTALLED_APPS = (
 ...
 'geostore',
 'geostore_routing',
 ...
)

Full documentation : https://django-geostore-routing.readthedocs.io/

Repository : https://github.com/Terralego/django-geostore-routing

Index

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 django-geostore

 		
 Installation

 		
 Requirements

 		
 SYSTEM REQUIREMENTS

 		
 With pip

 		
 With git

 		
 Configuration

 		
 Settings

 		
 INTERNAL_GEOMETRY_SRID

 		
 HOSTNAME

 		
 TERRA_TILES_HOSTNAMES

 		
 MAX_TILE_ZOOM

 		
 MIN_TILE_ZOOM

 		
 GEOSTORE_LAYER_VIEWSSET

 		
 GEOSTORE_LAYER_SERIALIZER

 		
 GEOSTORE_EXPORT_CELERY_ASYNC

 		
 URLs

 		
 Admin

 		
 QUICK START

 		
 Manage layers

 		
 Geometry type validation

 		
 JSON schema definition / validation

 		
 Vector tiles

 		
 Relations

 		
 Data import

 		
 Data export

 		
 API endpoints

 		
 Vector Tiles

 		
 Settings

 		
 metadata

 		
 attribution

 		
 licence

 		
 description

 		
 tiles

 		
 minzoom

 		
 maxzoom

 		
 pixel_buffer

 		
 features_filter

 		
 properties_filter

 		
 features_limit

 		
 Example

 		
 Vector Tiles Group Access

 		
 Where to add a group

 		
 Then ?

 		
 Plugins

 		
 Routing

_static/up-pressed.png

_static/up.png

_static/plus.png

